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Cover image: The correlation between galaxy shapes after the coherent distortion of the weak
gravitational lensing can be described by the cosmic shear 2-point correlation function (2PCF).
The values of the 2PCF vary as the angular separation (size of the orange dashed lines) be-
tween the projected galaxy shapes (blue ellipses) change. Background image: Perseus galaxy
cluster observed with the 2m Fraunhofer telescope at the Mt. Wendelstein Observatory of LMU
Munich.
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Preface
Important: Please read this first!

• Read the lab manual very carefully already before the first day of the lab! You are
expected to spend substantial amount of time at home studying the lab manual.

• Go through and perform the instructions provided in the ‘Software requirements for
this lab’ (see next page).

• Theoretical exercises (T1-T6) should ALREADY be attempted at home while preparing
for the first day of the lab. They are very important for understanding the theoretical
background of the lab. Note that students might be asked to present and discuss their
solutions during the lab session and also include them in the lab report.

• Experimental exercises are intended to be done on the first (P1.1-P1.6) and second
(P2.1-P2.7) days of the lab and their solutions should be included in the final lab report
as well.

• Your final lab report has to contain the complete solutions to all exercises. For the the-
oretical problems you can either write them up in LATEX or turn in (scanned version of)
your handwritten solutions (they should be neat and legible) along with your lab report.

In general, the lab is written for python users. It is our wish that while working through this
lab, students not only understand and grasp the main concepts of weak lensing cosmology
but also get familiar with scientific programming in python. The latter is an essential and
extremely valuable tool that will help students a lot during their master projects and further
research endeavours. To this end, we highly encourage students to learn and develop their
python programming skills through the exercises we have designed in this lab. An extremely
valuable resource (which has helped both the authors of this lab to learn python) is this excel-
lent week-long tutorial: https://astrofrog.github.io/py4sci/ .

The lab manual is not error free, so please do let your supervisors know in case you spot
errors and typos! Any feedback during and after the lab will always be highly appreciated. We
hope that you have fun doing the lab.

- Anik and Zhengyangguang
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Software requirements for this lab
We will use python and jupyter notebook for this lab. You’ll need the following packages:

• numpy, scipy and matplotlib. You can use pip or conda to install them.

• CLASS ( https://github.com/lesgourg/class_public ) - the package can be in-
stalled online from the github repository (for the latest version). An easier option which
installs a slightly older version (but is sufficient for our lab) can be obtained with:
pip install classy

• healpy ( https://healpy.readthedocs.io/en/latest/install.html ). You can
install this with: pip install --user healpy

• TreeCorr ( https://rmjarvis.github.io/TreeCorr/_build/html/overview.
html ). You can install this with: pip install treecorr

Please install these packages well in advance before the lab on either:

• Your own computer. Consult your supervisor already before the day of the lab if you
have problems with the installation and need help.

• Or use your account on the LMU physik jupyterhub portal1! where they are already
installed in the python environment python/3.11-2023.09. Simply start your cip pool
session with this specific python environment.

To test whether the installation of the packages worked or not, open a jupyter notebook and
in a cell execute the following code snippet:

import numpy as np
import scipy
import matplotlib.pyplot as plt
from classy import Class
import treecorr
import healpy as hp

If there are no errors, then your installation of these packages has been successful!

Once the packages are installed, download the code and data which are needed for the
lab exercises from:
https://datashare.mpcdf.mpg.de/s/iQL4nUmrDaYzmfP . From the terminal you can
simply perform:

wget https://datashare.mpcdf.mpg.de/s/iQL4nUmrDaYzmfP/download
unzip download
rm -rf download

1https://jupyter.physik.uni-muenchen.de/hub/login
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1 Introduction
Weak gravitational lensing involves the study of the cosmic shear field — coherent distortions
imprinted in the shapes of background source galaxies by the gravitational lensing effect of the
foreground matter distribution in the Universe (Bartelmann & Schneider 2001; Schneider et
al. 2006; Kilbinger 2015). Statistical analyses of cosmic shear data thus let us directly probe
the large-scale structure in our Universe, and consequently, enable us to place tight constraints
on the parameters of our cosmological models and address key questions such as the nature
of dark energy, dark matter and gravity. Indeed, cosmic shear data has already had a marked
impact in cosmology, most notably with the recent analyses of the data from large photometric
galaxy surveys like the Dark Energy Survey (DES Collaboration 2021), Kilo Degree Survey
(Heymans et al. 2021) and Hyper-Suprime Cam Survey (Hikage et al. 2019), and this progress
is expected to be taken to a whole new level when the data from the larger Euclid (Laureijs
et al. 2011), Vera Rubin (LSST Dark Energy Science Collaboration 2012) and Nancy Roman
(Spergel et al. 2015) surveys are available in the future. The main statistical tool employed by
all these surveys to analyse cosmic shear data are the so-called cosmic shear 2-point correlation
functions ξ± (Troxel et al. 2018).

In this lab we will study the theory behind this widely popular 2-point shear statistic and how
we can model it as a function of cosmological parameters. We will also measure this statistic in
simulated cosmic shear data obtained from realistic N-body simulations of our Universe. The
final goal of the lab would be to see whether our analytical calculations and our measurements
of the shear 2-point correlation function are in agreement or not.

2 Basic concepts in cosmology
Before we step into the topics of weak gravitational lensing, it is necessary for us to briefly
outline some basic cosmological concepts which should help you understand the content of the
manual. Most of you should already be familiar with topics such as standard ΛCDM cosmo-
logical model, redshift and distance measurement after participating in relevant cosmological
lectures. For more details, we recommend students to read Dodelson & Schmidt (2020), Pea-
cock (2012) and Mukhanov (2005).

2.1 Standard cosmological model
We have concrete evidence to show that our Universe is expanding. To describe the increasing
distance between two points in the Universe, it is convenient to introduce the scale factor a(t).
The contemporary value of it is set to one and it becomes smaller until zero when we trace back
in time to the beginning of the Big Bang. The actual physical distance d between two points is
then proportional to the multiplication of the scale factor and the comoving distance χ:

d = a(t)χ , (1)

where χ is defined in the comoving coordinates. This coordinate system expands uniformly
along with the Universe and thus the comoving distance remains constant with respect to time.

In order to measure distances in the Universe, we also need to know its geometry. There are
three possibilities which are parametrized by the spatial curvature k:
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• Euclidean (Flat): The Euclidean space with k = 0 and the Universe is of infinite volume.

• Open: A hyperbolic universe which can be imagined locally as an infinitely extended
saddle surface with k < 0.

• Closed: Analogous to the surface of a sphere with constant positive curvature k > 0.

With the above ingredients, we can write the differential 3D spatial distance in an expanding
curved universe in a spherical coordinate system as:

dl2
3d = a2(t)

(
dr2

1 − kr2 + r2(dθ2 + sin2θdϕ2)
)
, (2)

where r is the comoving distance along the radial direction, and θ, ϕ are the polar and azimuth
angles respectively.

However, the gravitational interaction in cosmology is described by the theory of General Rel-
ativity and in relativistic theory the spatial distance is not an invariant quantity with respect
to coordinate transformations. In order to compute such an invariant in cosmology, we have
to upgrade equation (2) to a four-dimensional spacetime in which the differential interval is
calculated as:

ds2 = gµνdxµdxν (3)

= −dt2 + a2(t)
(

dr2

1 − kr2 + r2(dθ2 + sin2θdϕ2)
)
, (4)

where we use natural units such that the speed of light c = 1. Indices µ and ν go from 0 to 3 with
0 indicating the time coordinate t and 1 to 3 representing the spatial coordinates. The metric ten-
sor g in the four-dimensional spacetime is the well known Friedmann–Lemaı̂tre–Robertson–Walker
(FLRW) metric expressed in spherical coordinates.

Another aspect of general relativity is that it relates the metric to the constituents of the Uni-
verse. This relation is contained in the Einstein field equations which can be neatly written
down as a collection of tensor equations:

Gµν + Λgµν = 8πGTµν . (5)

The first term on the left hand side of the equation is the Einstein tensor defined as:

Gµν ≡ Rµν −
1
2

gµνR , (6)

where Rµν is the Ricci tensor and can be computed from the metric tensor and its derivatives.
The scalar R is the Ricci scalar and is the contraction of the Ricci tensor R = gµνRµν. Λ is the
cosmological constant and under the ΛCDM cosmological parametrization it is proportional to
the dark energy density in the Universe. G on the right hand side of the equation is the gravi-
tational constant and T is the energy-momentum tensor which characterises the constituents of
the Universe such as matter, radiation and so on.

Based on equation (5), one can derive multiple equations governing the evolution of the Uni-
verse. Detailed derivations can be found in the previously mentioned references and here we
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just show some important results for a homogeneous and isotropic expanding universe. When
µ = ν = 0, the metric only considers the time-time component and equation (5) becomes

G00 + Λg00 = 8πGT00 . (7)

If we substitute the tensor entries on both sides of the equation with their corresponding ex-
pressions, we obtain the first Friedmann equation:(

ȧ
a

)2

=
8πGρ

3
−

k
a2 +

Λ

3
, (8)

where ȧ represents the derivative of the scale factor with respect to time and ρ is the energy
density of the constituents of the Universe such as matter and radiation. Next when considering
the spatial part of equation (5) with µ = ν = i where i = 1, 2, 3, we obtain the same equation
for each index:

Gii + Λgii = 8πGTii , (9)

from which the second Friedmann equation can be derived:

ä
a
= −

4πG
3

(ρ + 3p) +
Λ

3
, (10)

where ä is the acceleration of the scale factor and p is the pressure of the constituents of the
Universe. It is related to the corresponding energy density through the equation of state:

p = wρ , (11)

where w is the coefficient and has different values for different constituents in the Universe. We
have wm = 0 for non-relativistic matter (can be baryonic matter [b] or cold dark matter [cdm]),
wr = 1/3 for radiation [r] and wΛ = −1 for the cosmological constant [Λ].

It is very common in the cosmology literature to quote the density of a constituent of the
Universe in dimensionless units called the density parameter Ωi which for a given species i =
[b, cdm, r, Λ] is defined via

Ωi ≡
ρi

ρc
(12)

where ρc = 3H2/(8πG) is called the critical density. For a flat universe (k = 0 =⇒ Ωk = 0),
the sum of the density parameters for all the components which constitute the Universe equals2

1 i.e.: ∑
i

Ωi = 1 . (13)

If we combine equation (8) and equation (10) we can derive the equation describing the energy
density evolution:

ρ̇ = −3
ȧ
a

(ρ + p) , (14)

where one can replace the pressure with the equation of state and solve the differential equation
to obtain the energy density ρ(a) of a specific constituent as a function of the scale factor a.

2You can readily see this from the first Friedmann equation. Try to write the expressions for ΩΛ and Ωk.
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2.2 Redshift and distance measurement
Besides the scale factor, there is another commonly used quantity for the expansion: the redshift
z. It is related to the fact that the physical wavelength of light emitted from a distant object is
stretched proportional to the scale factor as it propagates towards the observer. It is defined as:

1 + z ≡
λobs

λemit
=

a(t0)
a(temit)

=
1

a(temit)
, (15)

where λobs is the observed wavelength, λemit is the emission wavelength. In conclusion, we can
write:

1 + z =
1

a(t)
. (16)

In this subsection, we introduce two types of distance: One is the comoving distance and the
other is the angular diameter distance. For simplicity, we only consider the scenario when
the Universe has a flat geometry (k = 0) which will be relevant to our theoretical modelling
later. Expressions for distances in a universe with non-zero curvature can be looked up in the
previously mentioned references.

Comoving distance

Imagine a light ray is emitted from a distant object at time t and reaches the observer at the
current time t0. It travels along the null-geodesic which means ds2 in equation (4) is always
equal to zero. If we assume that the light travels along the radial direction and all angular
changes are zero, we have dr = dχ in equation (4) and the comoving distance between the
observer and the object is given by:

χ(t) =
∫ t0

t

dt′

a(t′)
. (17)

One can rewrite the above equation as an integration over the redshift z. But before that we
need to introduce an important quantity defined to describe the expansion rate of the Universe
called the Hubble parameter:

H ≡
ȧ
a
, (18)

and if we combine this definition with equation (16), we can rewrite equation (17) as:

χ(t) =
∫ 1

a(t)

da′

ȧ(t′)a(t′)
=

∫ 1

a(t)

da′

H(a′)a2(t′)
=

∫ z

0

dz′

H(z′)
, (19)

where we exploit the relation that the redshift is zero at the current value of the scale factor
a(t0).

Angular diameter distance

In cosmological observations, if we know that the physical size of an extended object in the sky
is l and it subtends an angle of θwhich we observe, we can define another distance measurement
called the angular diameter distance:

dA ≡
l
θ
. (20)

The comoving size of the extended object can be represented as l/a and the comoving distance
from the observer to that object is exactly what we derive in equation (19). Therefore we can
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write the angular size of the object in terms of comoving length scales θ = (l/a)/χ and once we
substitute the angular size in equation (20) with this expression, the angular diameter distance
becomes:

dA = aχ =
χ

1 + z
, (21)

where it’s again important to remember that this is the angular diameter distance expressed in
a Euclidean space where k = 0.

2.3 ΛCDM model of cosmology
The Big Bang paradigm can be parametrized by the ΛCDM model, also called the standard
model of cosmology. It is a model with six independent free parameters which can well explain
the major results of the current cosmological observations:

• The origin and anisotropies of Cosmic Microwave Background (CMB).

• The distribution of galaxies at large scales.

• The abundance of light elements such as hydrogen and helium today.

• The current accelerating expansing of the Universe.

In short, ΛCDM model proposes a Euclidean universe dominated in its energy budget by the
non-baryonic cold dark matter and dark energy, where the current large scale structure of the
universe originated from initial perturbations generated by an inflationary epoch. To better
understand this model, we have to know the constituents of cold dark matter (CDM) and dark
energy (Λ) which are both beyond the Standard Model of particle physics. More details are
beyond the scope of this manual and interested readers can refer to the literature cited at the
beginning of this Section.

3 Statistical measures of a density field
Galaxy surveys are necessary and powerful tools in order to probe the large scale structure
(LSS) in our Universe. Galaxy surveys can be multi-dimensional in space: One-dimensional
pencil-beam surveys have a geometry which is much more extended along the line of sight
than across the sky, requiring the determination of distances to many galaxies at high redshift
(Munoz et al., 2010). Two-dimensional applications either reveal the distribution of galaxies
in the sky without determining distance, or correspond to redshift surveys along a great circle
in the sky like the equator (Gott et al., 2005). Nevertheless, the main application is in three-
dimensions with both a survey of galaxy clustering in the sky and a classification of galaxies
into multiple tomographic redshift bins like the Dark Energy Survey (DES) (Dark Energy Sur-
vey Collaboration et al., 2021).

The extraction of quantitative information from these surveys require unbiased and accurate
statistical techniques. In this lab, we will focus on the most popular statistic called the power
spectrum and its real space counterpart: 2-point correlation function (2PCF). This statistic is
going to be implemented on a simulated weak gravitational lensing shear map (relevant details
will be discussed in later sections). Therefore for the purpose of a general discussion, we will
first present in this section our statistical measures of a general continuous density field ρ(x⃗).
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3.1 Density perturbation field and its correlation function
The cosmological principle describes our Universe as homogeneous and isotropic. However
this can only be held true at large length scales. Surveys like SDSS (Sloan Digital Sky Sur-
vey) have already revealed that our Universe is homogeneous and isotropic on relatively large
scales (∼ 100 Mpc). However, there are prominent inhomogeneities in the matter density field
developed upon the homogeneous and isotropic background on small scales as the result of the
gravitational evolution of the Universe.

The values of the matter density field ρ(x⃗) themselves cannot effectively display the perturbed
feature in the late Universe. Therefore we define the density perturbation field which works
better with our statistical measures:

δ(x⃗) ≡
ρ(x⃗) − ⟨ρ⟩
⟨ρ⟩

, (22)

where we exploit the homogeneous property of the statistics that leads to ⟨ρ(x⃗)⟩ = ⟨ρ⟩ and we
have ⟨δ(x⃗)⟩ = ⟨δ⟩ = (⟨ρ⟩−⟨ρ⟩)/⟨ρ⟩ = 0 follow immediately. This implies that the average of the
density perturbation field is always zero and this quantity cannot reflect the inhomogeneities of
our Universe. Thus it would be more reasonable to describe inhomogeneities with the variance
of the density perturbation field, ⟨(δ − ⟨δ⟩)2⟩ = ⟨δ2⟩, rather than its average.

However, the variance ⟨δ2⟩ just indicates the strength of the inhomogeneity at a single location
but does not take into account the spatial correlations of density perturbations between different
points. Hence we need to introduce another statistic named 2-point correlation function (2PCF)
ξ to obtain further information:

ξ(⃗r) ≡ ⟨δ(x⃗)δ(x⃗ + r⃗)⟩ , (23)

where r⃗ is the displacement vector between two points in space and the angle bracket indicates
an average over the volume. It is positive when the density perturbations at two positions al-
ways have the same sign and negative if their signs are opposite. Essentially, it investigates
how the perturbations of separate points in real space correlate to each other. We can observe
that when r⃗ = 0⃗ (this is known as zero lag), the correlation function becomes the variance
of the density perturbation field: ξ(0⃗) = ⟨δ(x⃗)δ(x⃗)⟩ = ⟨δ2⟩. From the homogeneous property,
statistics like the 2PCF no longer depend on the positions of the two points but only on the
separation between them. Moreover, statistical isotropy implies that its values are independent
of the direction of the displacement vector between the two points and only depends on the
length of that separation vector. Therefore, the 2PCF is a spherically symmetric quantity in
three-dimensional space and can be simplified as ξ(⃗r) = ξ(r).

similar to the three-dimensional correlation function ξ(⃗r), we can also write the angular 2-point
correlation function in two-dimensional space. In this case only angular positions of points
within the 3D density perturbation fields are known but not the distances to them. Therefore,
when correlating perturbations of two field points on the 2D sky we have:

w(r̂1, r̂2) = ⟨δ2D(r̂1)δ2D(r̂2)⟩ , (24)

where r̂1 and r̂1 are unit vectors indicating directions (or angular positions). If the angular
separation between the two points in the sky is θ⃗, in analogy to the definition of correlation
function and based on statistical homogeneity and isotropy discussed in the previous section, it
can be written as:

w(r̂1, r̂2) = ⟨δ2D(r̂1)δ2D(r̂1 + θ⃗)⟩ = w(θ⃗) = w(θ) , (25)
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which depends only on the separation angle between r̂1 and r̂2. Usually, when the flat-sky
approximation is satisfied where the physical extension corresponding to the angular scale one
wants to probe on the celestial sphere is much smaller than the line-of-sight distance to the
targets, the angular separation θ can be expressed as a 2D vector in a flat sky plane.

3.2 Power spectrum of a density perturbation field
We suggest students to revise their knowledge about Fourier analysis before studying this sec-
tion of the manual and solving the associated exercises. Students can refer to Arfken & Weber
(2012) and familiarise themselves with the concepts of Fourier transform, the orthogonality and
completeness of Fourier coefficients and convolution theorem. Here we just show the Fourier
transform convention we adopt in this lab to describe a random continuous spatial density field
ρ:

ρ(x⃗) =
V

(2π)3

∫
ρ(⃗k)ei⃗k·x⃗dk⃗ , (26)

and its inverse Fourier transform:

ρ(⃗k) =
1
V

∫
ρ(x⃗)e−i⃗k·x⃗dx⃗ , (27)

where we take for granted that the above Fourier relations are in three-dimensional space and
V is the survey volume in which observations are carried out. The k⃗ in the above equations
are wave vectors and they are the Fourier space counterparts of the spatial coordinates in real
space. One useful property of ρ(⃗k) when ρ(x⃗) is a real-valued field is3:

ρ(⃗k) = ρ∗(−k⃗) , (28)

where the ∗ sign denotes for complex conjugate.

3.2.1 Power spectrum

Now, in order to find the equation for the power spectrum, we will first need to reformulate
the correlation function defined in equation (23). The two correlated density perturbation field
points can be represented by their corresponding Fourier transform and we would have:

ξ(⃗r) = ⟨δ(x⃗)δ(x⃗ + r⃗)⟩ (29)

=
V2

(2π)6

〈 ∫
k
δ(⃗k)ei⃗k·x⃗dk⃗

∫
k′
δ(⃗k′)ei⃗k′·(x⃗+r⃗)dk⃗′

〉
(30)

=
V

(2π)3

∫
k
|δ(⃗k)|2ei⃗k·⃗rdk⃗ . (31)

The power spectrum is either defined as:

P(⃗k) ≡ ⟨|δ(⃗k)|2⟩ , (32)

or alternatively as:
⟨δ∗(⃗k)δ(⃗k′)⟩ ≡ (2π)3δD(⃗k′ − k⃗)P(⃗k) , (33)

3It’s a nice little exercise for you to prove this.
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where δD is the 3-dimensional Dirac delta function. Then equation (31) can be written as:

ξ(⃗r) =
V

(2π)3

∫
k

P(k)ei⃗k·⃗rdk⃗ , (34)

from which we see that correlation function is simply the Fourier transform of the power spec-
trum.

Exercise:
• T1: Complete the derivation from equation (30) to equation (31). During the process you
may need to implement the Fourier analysis mentioned at the beginning of section 3.2.

3.2.2 Angular power spectrum

Instead of r⃗, one would generally use angular separation vector θ⃗ as the displacement vector
for correlation functions in real observations performed on the 2D celestial sphere. The Fourier
counterpart of the angular separation vector is the multipole number vector ℓ⃗ whose modulus
only takes integers as we expand a density perturbation field on a spherical surface in terms of
spherical harmonics4.

The expansion of the density perturbation field at a given direction in spherical harmonics
is:

δ2D(r̂) =
∑
ℓ≥0

ℓ∑
m=−ℓ

aℓmYℓm(r̂) , (35)

where r̂ is the unit vector pointing to a specific direction in the sky. Yℓm are spherical harmonics
and like the set of continuous wave vectors {ei⃗k·x⃗} that appear in Fourier transform, they also
form an orthogonal and complete set on the spherical sky. aℓm are coefficients of spherical har-
monics. ℓ is the multipole number and m is another index associated with different orientations
of the vector ℓ⃗.

One important mathematical property of spherical harmonics Yℓm is:∑
m

Y∗ℓm(r̂1)Yℓm(r̂2) =
2ℓ + 1

4π
Lℓ(cosθ) , (36)

where r̂1, r̂2 are two different unit pointing vectors, r̂1 · r̂2 = cosθ and Lℓ(cosθ) is the Legendre
polynomial of order ℓ. Analogous to the definition of power spectrum in equation (33), the
angular power spectrum is defined as:

⟨a∗ℓmaℓ′m′⟩ ≡ δℓℓ′δmm′Cℓ , (37)

where δℓℓ′ and δmm′ are Kronecker delta functions. Similarly, the corresponding definition to
equation (32) for the angular power spectrum is

Cℓ = ⟨|aℓm|2⟩. (38)

4Remember from your Quantum mechanics lecture how for a spherically symmetric system (e.g. Hydrogen
atom) where the angular momentum is conserved, the solutions to the angular part of the Schrödinger equation
are the spherical harmonics Yℓm.
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Based on the definition of angular correlation function in equation (25), we can derive the
relation between angular correlation function and angular power spectrum in a similar approach
as that implemented for the three-dimensional correlation function and power spectrum:

w(θ) = ⟨δ2D(r̂1)δ2D(r̂2)⟩ (39)

=
∑
ℓm

∑
ℓ′m′
⟨a∗ℓmaℓ′m′⟩Y∗ℓm(r̂1)Yℓ′m′(r̂2) (40)

=
1

4π

∑
ℓ

(2ℓ + 1)CℓLℓ(cosθ) , (41)

Exercise:
• T2: Apply the mathematical properties presented in subsection 3.2.2 and try to complete the
derivation from equation (39) to equation (40).

3.2.3 The projection of three-dimensional power spectrum

In order to successfully join the two pieces of information in two-dimensional and three-
dimensional space described separately before, we are going to introduce the mathematics
of projecting 3-dimensional power spectrum of density perturbation fields into 2-dimensional
power spectrum within the flat-sky approximation and then apply the spherical correction which
leads to the angular power spectrum.

The 2D density perturbation field towards direction r̂ is given by a weighted line-of-sight pro-
jection along the comoving radial direction of the 3D density perturbation field:

δ2D(r̂) =
∫

dχ q(χ) δ(χr̂, χ) , (42)

where q(χ) is a kernel which weighs the 3D density perturbation at distance χ along the line of
sight.

Starting from the equation above can show that the two-dimensional power spectrum P2D itself
can be written as a line-of-sight projection of the three-dimensional power spectrum P3D ≡ P
(introduced in equation (32)), by applying the Limber’s approximation (Limber, 1954):

P2D(ℓ⃗) =
∫

dχ
q2(χ)
χ2 P3D

(
|⃗k| =

|ℓ⃗|

χ
, χ

)
. (43)

The explicit expression for the weighting kernel q(χ) in the context of gravitational lensing will
be introduced in a later section. k⃗ is the Fourier mode in three-dimensional space and again
from statistical isotropy we have P2D(⃗l) = P2D(l). The detailed derivation of the above equation
(43) from equation (42) can be found in the appendix of Kaiser, 1992.

This two-dimensional power spectrum from the flat-sky and Limber’s approximation gener-
ally agrees quite well with current observations such as the Dark Energy Survey and the Kilo
Degree Survey. However, for the weak lensing cosmic shear field that we will investigate in
our lab, a further correction is possible to partly correct this two-dimensional power spectrum
under the flat-sky approximation to the corresponding one on the spherical sky, i.e. the angular
power spectrum Cℓ:

Cℓ(ℓ) =
(ℓ + 2)(ℓ + 1)ℓ(ℓ − 1)

(ℓ + 0.5)4 P2D

(
ℓ +

1
2

)
. (44)
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From equation (44), also called the Kitching correction (Kitching et al. 2017), one can easily
calculate the angular correlation function using equation (41). In principle, the summation of ℓ
should go up to infinity. However, since generally the angular power spectrum asymptotically
approaches zero at large ℓ, we can stop the summation at a sufficiently large ℓ and obtain a
fairly accurate result for the correlation function.

4 Basic theory of weak gravitational lensing
As predicted by the theory of General Relativity, light coming to us from distant sources would
be deflected by intermediate matter. This so called gravitational lensing phenomena provides
us a unique tool to map the distribution of matter in our universe and constrain parameters in
our cosmological models. To understand the basic key concepts of gravitational lensing theory
(such as deflection angle, lens equation, critical curves and caustics) you can learn them from
the lab of strong gravitational lensing or read yourself the review by Narayan & Bartelmann
(1996). In this manual, we will focus on the theory and observables that are more relevant to
the weak gravitational lensing regime. One can refer to Schneider et al. 2006 and Halder et al.
2021 for more details discussed in this section.

4.1 Weak lensing basics
In weak gravitational lensing, emitted light from the source object will be deflected by the
intervening matter. The deformation of a lensed image with respect to its unlensed image can
be represented by a distortion matrixA:

A =
∂
(
δβ⃗

)
∂
(
δθ⃗

) = (
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
(45)

= (1 − κ)
(
1 0
0 1

)
− γ

(
cos(2ϕ) sin(2ϕ)
sin(2ϕ) −cos(2ϕ)

)
, (46)

where δβ⃗ and δθ⃗ are differential angular position vectors of source and images respectively
as denoted in Figure.1. Here we have also introduced several new quantities: κ is the con-

vergence and γ is the modulus of the shear γ =
√
γ2

1 + γ
2
2. Shear itself is a complex vector

γ⃗ = γ1 + iγ2 = γe2iϕ and ϕ is the orientation angle of the shear.

The effects of distortion represented by equation (46) can be understood schematically from
Figure 2 in which we show how the gravitational lensing distorts the image of a source galaxy
whose projected shape in the sky is assumed to be intrinsically circular. From the equation
we see that convergence is only attached to an identity matrix, indicating that convergence
would not add correlation to the two components of the angular position vector of the source
galaxy and it is only responsible for magnifying the source image isotropically. Moreover, we
have κ < 1 for the weak gravitational lensing. On the other hand, shear is expressed with a
rotation-like matrix, implying that it would rotate and stretch the source image, i.e. introducing
anisotropy into the shape of a galaxy image. Unlike strong gravitational lensing, weak lensing
cannot produce multiple images but only the above distortion effects on the single image. Such
a schematic illustration can be seen in Figure.3.
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Figure 1: Illustration of a lensing system. Point “S”, “I” and “O” denote for source, deflected
image and observer respectively. At the bottom are distances between source, lens and the
observer. Light emitted by a source which has a distance η from the central optical axis and
propagates parallel to it is deflected by an angle α̂ and then reaches the observer. The resulting
image would have an angular separation θ from the optical axis in the sky which is different
from the actual separation of the source β. Image from Narayan & Bartelmann (1996).

Figure 2: Effects of lensing distortion. For an intrinsically circular source galaxy, conver-
gence will magnify its size isotropically and shear will turn it into an ellipse and thus introduce
anisotropy in its shape. Image from Narayan & Bartelmann (1996).

4.2 Weak lensing measurement
4.2.1 Shear estimation

In weak lensing regime, a source object is usually a distant galaxy whose image is distorted by
the foreground matter. What we can observe directly through photometric surveys such as Dark
Energy Survey (DES) is the shape of each galaxy, characterised by its ellipticity. It is the shear
field that induces ellipticities (i.e. results of the image distortion) as mentioned in the previous
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Figure 3: Effects of weak gravitational lensing distortion. One can take every green dot as
a source galaxy. No multiple images are produced from each unlensed source. In the above
panel, every source galaxy is assumed to be circular for its projected shape in the sky. In the
bottom panel, each source galaxy has its own intrinsic ellipticity before being weakly lensed.
Image from https://en.wikipedia.org/wiki/Weak_gravitational_lensing.

section and there are many approaches to infer the shear field from those measured ellipticities
assuming that the intrinsic galaxy shapes are on average circular.

The first question we need to address is what is the origin of the shear field? Since it is gravity
that deflects the light and distorts the images, the answer is not hard to guess. The shear field
must be induced by the mass concentration between the source and the observer.

Just as the gravitational field can be expressed as the derivative of the gravitational potential,
the shear field can also be written as the derivative of a corresponding lensing potential from
large scale structures (Kilbinger, 2015):

Ψ(θ⃗, χ) =
2
c2

∫ χ

0
dχ′

fk(χ − χ′)
fk(χ) fk(χ′)

Φ( fk(χ′)θ⃗, χ′) , (47)

where χ is the radial comoving distance and fk(χ) is the comoving angular diameter distance in
a space with curvature k which would be equal to χ if the universe is flat. Φ is the Newtonian
gravitational potential and here the lensing potential at a point in space is a weighted sum of
the Newtonian potential between the observer and that point. c is the speed of light and θ⃗ is the
two-dimensional angular position vector in the sky.

The shear field comes from the second order derivative of the lensing potential with respect
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to the angular coordinates:

γ1 =
1
2

(Ψ,11 − Ψ,22) (48)

γ2 = Ψ,12 , (49)

where Ψ,i j = ∂Ψ/(∂θi∂θ j). Here the two components of the shear γ1(θ⃗) and γ2(θ⃗) are specified
in a chosen Cartesian coordinate at a given location θ⃗ with respect to a reference point in a 2D
flat sky. However, we can also decompose the shear field into two components defined with
respect to the angular position5 θ⃗: the tangential shear γt and cross shear γ×. Their relations to
the γ1 and γ2 are:

γt = −γ1cos2ϑ − γ2sin2ϑ (50)
γ× = −γ1sin2ϑ + γ2cos2ϑ . (51)

A clear explanation can be seen in Figure 4. Suppose the matter distribution between the

Figure 4: C is the central reference point. Tangential shear γt is defined perpendicular to or
along the line connecting the field and the reference point. Cross shear γ× is defined with
the directions of tangential shear rotating 45

◦

. In this figure, the direction perpendicular to
the radial direction is defined as the positive axis for the tangential shear and after rotating it
45

◦

clockwise the positive axis for cross shear is defined. Therefore at three different angular
positions, the tangential and cross shear which are represented by the black and red bars are of
constants. However, the values of corresponding γ1 and γ2 are different following the inverse
transformations shown in equation (50) and equation (51). Image adopted from Gruen 2015.

source and the observer has spherical symmetry, then the weak lensing distortion should per-
fectly place the lensed galaxy images along the tangential direction with respect to the center
of mass concentration and the cross shear will always be zero. Another issue to notice is that

5In 2D polar coordinates, the angular posotion θ⃗ can be decomposed into a radial length θ and a polar angle ϑ
with respect to a reference point.
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the same value of tangential and cross shear correspond to different values of γ1 and γ2 for field
points at different angular positions in the sky.

Aside from the induced ellipticity by the shear field, the unlensed galaxy image would have
an intrinsic ellipticity from its original shape projected in the sky (also referred to as shape
noise in Fig.3). Assuming there are no additional distortion from observational systematic er-
rors, the relation between the observed ellipticity eobs and the intrinsic ellipticity eint of a galaxy
is:

eobs =
eint + γ

1 + γ∗eint , (52)

where γ∗ represents the complex conjugate of the shear field but not the modulus of the shear
as denoted in the previous section. The ellipticity itself depends on how observations measure
the light distribution of a galaxy and there can be various definitions (Schneider et al. 2006). It
is infeasible in weak lensing regime to probe the shear value at a point in the field by measuring
the ellipticity of just one neighboring galaxy since both observed and intrinsic ellipticities are
hard to measure and the results would be highly inaccurate. However, based on one critical
assumption that unlensed galaxies are oriented randomly (Schneider et al. 2006), if we mea-
sure sufficiently large number of galaxies around that field point and take the ensemble average
of the observed ellipticities, the ensemble average of intrinsic ellipticities would vanish due to
their random orientations and we are left with ⟨eobs⟩ ≈ γ. This is only an approximation and
what scientists actually measure from ellipticities is a quantity called reduced shear:

g =
γ

1 − κ
, (53)

which in the limit of weak lensing regime would become g ≈ γ since κ ≪ 1. In our lab, we
will consider eint = 0 and thus eobs = γ.

Exercise:
• T3: Following the tangential and cross shear convention in Figure.4, we assume that γ1 = 0.3
and γ2 = 0.0 for all θ = 0

◦

, 45
◦

and 90
◦

. Please compute the corresponding γt and γ× at all three
different angular positions. Also explain the positive and negative signs in front of each γt and
γ×.

4.2.2 Convergence and its relation to the shear

Lensing convergence κ is another quantity that has been introduced in the previous section.
Like the shear field, the convergence field can be derived from the second order derivative of
the lensing potential as well:

κ =
1
2
∇2
θΨ , (54)

where ∇2
θ is a two-dimensional Laplacian operator with respect to the angular coordinates. We

can substitute the lensing potential in equation (47) with the expression in equation (54) and
notice that since the Laplacian operator acts on angular coordinates, it can only operate with the
Newtonian potential within the integrand. By introducing the Poisson equation in comoving
coordinates, we are able to write the convergence at a given point in space as:

κ(θ⃗, χ) =
3H2

0Ωm

2c2

∫ χ

0
dχ′

fk(χ − χ′) fk(χ′)
fk(χ)

δm( fk(χ′)θ⃗, χ′)
a(χ′)

, (55)
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where H0 is the Hubble parameter at redshift zero, Ωm is the density parameter of total matter
in the universe. δm( fk(χ)θ⃗, χ) is the matter density perturbation field following the definition in
equation (22) and a(χ) is the scale factor. There is a nice interpretation of the equation above
which can be understood as follows. If a single light source is located at comoving distance χ
with angular position θ⃗, then the lensing convergence that a light ray bundle from the source
experiences on its way towards the observer is given by a weighted sum of the contributions
from all the matter density distribution between the observer and the source.

We can further assume that multiple source objects follow a (normalised) redshift distribution
ps(z) along the line-of-sight with the corresponding distribution in comoving distance being
ns(χ) i.e. ns(χ)dχ = p(z)dz. In this case, the mean convergence towards direction θ⃗ becomes:

κeff(θ⃗) =
∫ χmax

0
dχ ns(χ)κ(θ⃗, χ) (56)

=
3H2

0Ωm

2c2

∫ χmax

0
dχ g(χ) fk(χ)

δm( fk(χ)θ⃗, χ)
a(χ)

, (57)

where χmax is the maximal radial comoving distance (e.g. the horizon of the observable uni-
verse) and g(χ) reads:

g(χ) =
∫ χmax

χ

dχ′ns(χ′)
fk(χ′ − χ)

fk(χ′)
. (58)

From the above discussion, we know that both shear and convergence are derived from the
second order derivative of the lensing potential. Therefore, it is clear that shear and convergence
are not independent from each other. It is easier to write down their relation in Fourier space
where the 2D angular position θ⃗ transforms to the multipole ℓ⃗:

γ(ℓ⃗) =
(ℓx + iℓy)2

ℓ2
κ(ℓ⃗) = e2iϕℓκ(ℓ⃗) , ℓ , 0 (59)

where ℓ =
√
ℓ2x + ℓ

2
y and ϕℓ = arctan

( ℓy
ℓx

)
is the polar angle of ℓ⃗.

Exercise:
• T.Optional: Show the derivation which allows you to explicitly write down the integral ex-
pression of g(χ) in equation (58). In equation (56) discuss the reason for the integration limits
of κeff(θ⃗) i.e. the inner integration over χ′ and the outer integration over χ. Hint: When starting
from equation (56), try to apply Fubini’s theorem6 to the double integral. You can use the flat
universe assumption for terms involving fk(χ) to ease your derivation.

5 Weak gravitational lensing statistics
In this section, we are going to combine what we have introduced in the previous two sections
and build 2-point statistical models for weak gravitational lensing observables, in this case
weak lensing shear specifically. Later on students will compare the theoretically computed
2PCF of shear to that measured from N-body simulations and therefore validate the modelling.

6A simple illustration can be seen in this webpage: https://mathinsight.org/double_integral_
examples
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5.1 Shear 2PCF and its relation to the convergence 2PCF
By definition (Schneider and Lombardi, 2003), the 2PCF of shear has two branches: one is the
plus shear 2PCF, ξ+ and the other is the minus shear 2PCF, ξ−7. Students should now recall our
previous discussion about tangential and cross shear components as we will use them to define
the shear 2PCFs.

Suppose we have two points in the sky with respective 2D angular positions θ⃗1 and θ⃗2 and
these two points are separated by a separation vector α⃗. We can write down the tangential and
cross shear at each of these two positions as γt,1, γt,2 and γ×,1, γ×,2. Then the shear 2PCFs are
defined as:

ξ+(α⃗) ≡ ⟨γt,1γt,2⟩ + ⟨γ×,1γ×,2⟩ = ⟨γ(θ⃗1)γ∗(θ⃗2)⟩ (60)

ξ−(α⃗) ≡ ⟨γt,1γt,2⟩ − ⟨γ×,1γ×,2⟩ = ⟨γ(θ⃗1)γ∗(θ⃗2)e−4iϕα⟩ , (61)

where γ is the complex shear introduced in section 3.1 and ϕα is the polar coordinate of the sep-
aration vector α⃗. From the discussion in section 2.2, we know that equation (60) and equation
(61) can be rewritten as the 2D inverse Fourier transform of the corresponding power spectrum.
Now if we apply the relation between Fourier space 2D shear and convergence in equation (59)
to the definition of power spectrum in equation (32), we can obtain the relation between 2D
power spectrum of shear and convergence:

P2D
γ (ℓ⃗) = ⟨γ∗(ℓ⃗)γ(ℓ⃗)⟩ = ⟨e−2iϕℓκ∗(ℓ⃗)e2iϕℓκ(ℓ⃗)⟩ = P2D

κ (ℓ⃗) . (62)

Based on equation (62), we can now express the shear 2PCFs in terms of convergence power
spectrum. Though one thing to notice here is that in ξ− we have this extra phase factor and
its counterpart in Fourier space would be e−4iϕℓ . In conclusion, the shear 2PCFs can be written
down as:

ξ+(α) = F −1[P2D
κ (ℓ)

]
=

∫
dℓℓ
2π

P2D
κ (ℓ)J0(ℓα) (63)

ξ−(α) = F −1[P2D
κ (ℓ)e−4iϕℓ] = ∫

dℓℓ
2π

P2D
κ (ℓ)J4(ℓα) , (64)

where in the above two equations we again exploit the isotropic property of density field sta-
tistical measurement and do not consider the direction of the separation vector but only its
modulus. equation (63) essentially is the 2D version of equation (34) when we only consider
the real value component in it. equation (64) has a similar form but different weighting for mul-
tipoles due to the extra phase factor. J0 and J4 are the zeroth and fourth-order Bessel functions
of the first kind respectively. These equations are known as Hankel transforms8. An important
remark here is that for our lab we will not evaluate the above Hankel transforms as written in
the equations above. Instead, we will replace the integration in equations (63) and equation
(64) with similar kind of summations introduced in equation (41) involving associated Legen-
dre polynomials. These summations are efficient and numerically stable ways to evaluate the
Hankel transforms above and the relevant code to perform them will be provided in the lab

7To be precise, there is also the cross plus and minus correlations but they will vanish when the shear field is
statistically invariant under parity transformations

8Hankel transforms express any given function as a weighted sum of an infinite number of Bessel functions
of the first kind. They are also known as Fourier-Bessel transforms.
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exercise folder (explaining the exact expressions for these summations are beyond the scope of
this manual but the interested student can look them up in the provided code and the references
therein).

So much for the theory, in practice, one actually estimates the shear 2PCFs in equations (60)
and (61) from the observed ellipticities of galaxies (note that in the lab we assume eobs = γ)
and they are measured as follows (Troxel et al. 2018):

ξ̂±(α) =
∑

i, j wiw j(γi
tγ

j
t ± γ

i
×γ

j
×)∑

i, j wiw j
(65)

where i, j are the indices of a pair of observed galaxies which are separated by an angular
separation α. The wi are the weights associated to each observed galaxy (in our lab wi = 1).
For our exercises we will use the publicly available software TreeCorr (see Section 5.3) which
has a fast implementation of equation (65) for computing the ξ± from data.

5.2 2D power spectrum of convergence
Coming back to our theoretical modelling, the final step before we can have a complete ana-
lytical model for the shear 2PCFs is to express the 2D convergence power spectrum explicitly.
From equation (57), we see clearly that convergence is a weighted line-of-sight projection of
matter density perturbation. If we combine this understanding with the projection of 3D power
spectrum in equation (43), it’s straightforward for us to say that the 2D convergence power
spectrum P2D

κ is a weighted line-of-sight projection of the 3D matter power spectrum P3D
δm

.

The weighting kernel q in equation (43) for lensing is (we call this the lensing kernel):

q(χ) =
3H2

0Ωm

2c2 g(χ)
fk(χ)
a(χ)

, (66)

where g(χ) and fk(χ) are the same as in equation (57). Previously in the Optional Exercise we
have derived the formula for g(χ) which students should now realise that it contains weak lens-
ing source distribution ns(χ). In this lab, we shall assume that the source redshift distribution
is a Dirac delta function δD(χ − χs), implying that all weak lensing sources are located at the
same redshift corresponding to the comoving distance χs. Then for the 2D convergence power
spectrum where we have the case that q1(χ) and q2(χ) in equation (43) are identical, we have
the following expression:

P2D
κ (ℓ) =

9H4
0Ω

2
m

4c4

∫ χs

0
dχ

(
χs − χ

χs a(χ)

)2

P3D
δm

(
|⃗k| =

|ℓ⃗|

χ
, χ

)
. (67)

By changing the variable as dχ = cdz/H(z), equation (67) can be written as an integration in
redshift space:

P2D
κ (ℓ) =

9H4
0Ω

2
m

4c4

∫ zs

0

cdz
H(z)

(
χs − χ(z)
χs

(1 + z)
)2

P3D
δm

(
|⃗k| =

|ℓ⃗|

χ(z)
, z

)
. (68)

Exercise:
• T4: For a Dirac delta source redshift distribution ns(χ), write down the explicit formula for
g(χ) in equation (58) and the corresponding lensing kernel q(χ) in equation (66). Then based
on equation (43), equation (57) and equation (66), derive equation (67).
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5.3 Matter power spectrum
Now students may ask: But we still don’t know how to quantify the 3D matter power spectrum
P3D
δm

(k, z) ≡ Pδm(k, z) and without this knowledge how can we obtain the final model for P2D
κ and

eventually the shear 2PCFs ξ±?

Indeed, finding a correct way to describe the matter power spectrum in our Universe is not
a simple task. In this manual, we will only provide a brief discussion that is relevant to the lab
content. Students who are interested can find more details in the institute’s cosmology lectures
or textbooks such as Dodelson & Schmidt, 2020. Students are not required to write down
matter power spectrum analytically and do the relevant coding work themselves. This
subsection is mainly for a theoretical understanding purpose.

The cosmological analysis of the initial conditions in our Universe shows that the primordial
dimensionless matter power spectrum is almost scale-invariant:

∆2
i (k) =

k3Pi
δm

(k)

2π2 ∝ kns−1 , (69)

where the scalar spectral index ns is constrained to be 0.9649± 0.0042 at 68% confidence level
according to the Planck results. One important cosmological parameter to introduce here is As

which characterises the amplitude of this primordial matter power spectrum. After the primor-
dial phase, our Universe consecutively enters epochs in which the dominant energy component
is radiation and matter respectively. During these epochs, the shape of the dimensionless mat-
ter power spectrum will be changed due to the structure growth. And this shape change can be
described in terms of the transfer function T (k) which transfers the initial dimensionless power
spectrum of comoving curvature perturbations ∆2

R ∝ ∆
2
i (k) to its value today:

∆2(k, a = 1) ∝ k4T (k)2kns−1 , (70)

where the transfer function will be computed numerically by a code package in this lab.

If we also consider the component of dark energy and only keep the linear term of density
perturbation when we solve the evolution equations, the growing solution for the matter is:

δm(x⃗, t) = D(t)δm(x⃗) , (71)

where D is called the growth factor and from the above equation one can observe that the time
and spatial evolution of matter density in the linear perturbation regime is independent from
each other. In the late time Universe, As can be reparametrized as σ8 which describes the vari-
ance of the matter density fluctuations in spheres of radius 8 Mpc/h. This parameter will be
used in later practical exercises.

Exercise:
• T5: Based on the simplified discussion on the linear perturbation, try to find the dependence
of linear matter power spectrum Plin

δm
(k, z) on the wavenumber k, the transfer function T (k) and

the growth factor D(t) (or D(z)). Write it down in a proportionality relation.

However, the above linear theory only works in the regime where the matter density perturba-
tion is very small δm ≪ 1. In order to describe the real matter power spectrum in the Universe,
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linear regime is not accurate enough. We have to solve for the matter power spectrum in the
non-linear regime where δm ≫ 1. To do that, two major approaches are available: One is to
solve the differential evolution equations in the context of higher-order, nonlinear perturbation
theory. The other is to run N-body simulations which capture the realistic gravitational inter-
actions and invent a fitting formula with many free parameters to be optimised for the matter
power spectrum and calibrate the fitting formula against the corresponding measurements from
simulations. In this lab, we are going to use a fitting formula from the second approach called
“Halofit” (Takahashi et al. 2012) to calculate the matter power spectrum for different cosmo-
logical parameters. We will use CLASS to compute the matter power spectrum, please refer to
Section 5 for information regarding it.

Exercise:
• T6: In the lab we will work with the publicly available N-body simulation data set of Taka-
hashi et al., 2017 (or T17 simulation to be simple). Therefore, we need to find the correspond-
ing cosmological parameters of that simulation suite for which we would need to compute
various cosmological terms such as the matter power spectrum, Hubble parameter etc. Open
the relevant paper (https://arxiv.org/pdf/1706.01472.pdf) and find the cosmological
parameters of the T17 simulation. You should tabulate these values in your report and mention
from which Section of the paper you obtained them.

6 Software tools to be used in this lab

6.1 CLASS
CLASS — the Cosmic Linear Anisotropy Solving System (Lesgourgues et al. 2011) — is
a code package written in an object-oriented style with an available python wrapper9. It can
be used to simulate many important CMB (Cosmic Microwave Background) and large scale
structure observables. In this lab, we will use CLASS to compute the nonlinear matter power
spectrum Pδm(k, z) which is a critical component in our modelling for the shear 2PCFs as dis-
cussed in previous sections.

A simple way to understand CLASS in this lab is to think of it as a machinery that takes in an
input dictionary which contains cosmological parameters, the desired target output and relevant
free parameters. The code package will then solve a system of evolution equations, including
the transfer function mentioned above, based on the cosmological information provided by the
input dictionary and return a python class object 10. One can call many functions (methods)
from this python class object to compute the specified target output and other background quan-
tities. These can be the matter power spectrum, Hubble parameter, angular diameter distance
and so on. Since many such quantities evolve along with the redshift z, one needs to give the
corresponding value to those functions for them to calculate. Below we will show an illustration
example about CLASS that can better enable students to work with it.

9https://lesgourg.github.io/class_public/class.html
10For students who are not familiar with the concept of class in python, this link: https://www.w3schools.

com/python/python_classes.asp provides a quite clear explanation.
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6.1.1 An example of CLASS

import numpy as np
from classy import Class

# Set up the input parameters #
Omega m = 0.3 # matter density parameter
Omega b = 0.043 # baryon density parameter
h = 0.7 # reduced Hubble parameter H/100
n s = 0.96 # scalar spectral index
sigma8 = 0.81 # characterisation of power spectrum amplitude
nonlinear model = “Halofit” # nonlinear modelling recipe
kmax pk = 50.0
z max pk = 2.5

# Write down the input dictionary #
commonsettings = {
‘N ur’ :3.046,
‘N ncdm’ :0,
‘output’ :‘mPk’,
‘P k max 1/Mpc’ :kmax pk,
‘omega b’ :Omega b * h**2,
‘h’ :h,
‘n s’ :n s,
‘sigma8’ :sigma8,
‘omega cdm’ :(Omega m - Omega b) * h**2,
‘Omega k’ :0.0,
‘Omega fld’ :0.0,
‘Omega scf’ :0.0,
‘YHe’ :0.24,
‘z max pk’ :z max pk,
‘non linear’ :nonlinear model,
‘write warnings’ :’yes’ }

# Set up the CLASS object and compute it #
Cosmo = Class()
Cosmo.set(commonsettings)
Cosmo.compute()

# several functions on can call from python class object Cosmo #
print(Cosmo.Hubble(0.5))
print(Cosmo.angular distance(1.0))
print(Cosmo.pk(1.0, 0.2))

There are several things to pay attention in the above example code:

1. from classy import Class is the line which imports the python wrapper of the CLASS
code package. CLASS will be installed beforehand and students should be able to import
it.
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2. In the input dictionary, we give ‘mPk’ to the key ‘output’ since this tells CLASS that we
want the matter power spectrum as the target output. Another two keys ‘P k max 1/Mpc’
and ‘z max pk’ fix the maximum wavenumber and redshift for the matter power spec-
trum computation.

3. For density parameter keys in the dictionary, names starting with lower case letter is
the physical density parameter and is equal to the density parameter multiplied by h2

(e.g. ωb = Ωb × h2). Also in CLASS, one cannot directly input the total matter density
parameter. Instead it can be decomposed into cold dark matter, baryon and non-cold dark
matter particles such as neutrinos (e.g. Ωm = Ωcdm + Ωb + Ων).

4. In the above code, we assume a flat universe and set the curvature density parameter
‘Omega k’ to be zero. And when considering the dark energy, we assume the ΛCDM
model with cosmological constant. That’s why we do not adopt the dynamic equation
of state (‘Omega fld’ = 0.0) or the scalar field model (‘Omega scf’ = 0.0). From all the
other energy components, CLASS will automatically infer the density parameter of dark
energy.

5. In the last three lines, we ask the CLASS object to compute three different quantities:
Hubble parameter, angular diameter distance and matter power spectrum. The first two
are functions of redshift. The last one is a function of (k, z). All wavenumbers in the
above code have the unit of Mpc−1.

6. As we introduced in section 4.3, one can use fitting formula calibrated from N-body
simulations to describe the nonlinear matter power spectrum. Here we use the specific
“Halofit” which is also what we shall use through the whole lab. However, there are other
options for nonlinear fitting (e.g. HMcode) which have their own features.

Exercises:
• P1.1
• P1.2
• P1.3
• P1.4
• P1.5
• P1.6

All the practical exercises are collected in Section 6.

6.2 Healpy - working with random fields on the sphere
As mentioned in the previous sections, for the purpose of this lab we want to investigate the
weak lensing field on the projected 2D sky i.e. on the celestial sphere. In order to achieve this,
we use Healpy11 — a Python package which allows one to analyse and visualise data in pixe-
lated format (at a given resolution) on the unit sphere (all-sky).

Healpy is a Python wrapper for the Hierarchical Equal Area isoLatitude Pixelisation — HEALPix12

11currently hosted at https://github.com/healpy/healpy
12currently hosted at https://healpix.sourceforge.io/
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C++ library (Zonca et al. 2019). The pixelisation is a process to subdivide the spherical surface
of the sphere into many pixels such that every pixel covers the same surface area. Each pixel
on the sphere can be characterised by two angular coordinates written together as the direction
vector r̂ (see section 3.2.2). We shall refer to the size of a single pixel as the ‘pixel scale’.
The area of a pixel depends on the resolution of the map which can be set using the healpy
keyword13 NSIDE. This keyword defines the total number of pixels Npixel which make up the
full sky map:

Npixel = 12 · NSIDE2 . (72)

As an example, if the resolution of a healpy sky-map was kept at NSIDE = 1024, implying that
Npixel = 12582912 (from equation (72)). This results in a pixel area of Apixel = 3.3 · 10−3 square
degree (computed using healpy’s nside2pixarea routine). The pixel smoothing scale can
roughly be estimated by:

θpixel ≈
√

Apixel (73)

which gives a scale of θpixel ≈ 3.43 arcmins.

Higher resolutions i.e. larger values of NSIDE result in a higher number of pixels covering
the full surface of the sphere. This leads to a smaller area Apixel for each pixel or in other words
a smaller pixel smoothing scale θpixel. One should note here that due to the internal functional-
ity of healpy, NSIDE is required to have a value which is a power of 2.

Exercise:
• P2.1
• P2.2
• P2.3

All the practical exercises are collected in Section 6.

6.3 TreeCorr - computing angular correlation functions
In equation (65) we saw how one can estimate the shear 2PCF from observed galaxy elliptici-
ties. This estimation of the shear 2PCF from data actually involves finding all possible pairs of
points on the random field located at r̂i and r̂ j which are separated by an angular separation α
i.e. r̂i · r̂ j = cosα and then computing the average of the product of the shear values evaluated
at those points as shown already in equations (60) and (61).

However, when we want to perform this on data on the sphere, it should be noted that ef-
fects such as the resolution of the data (e.g. for healpy images, the pixel size Apixel) does not
allow one to distinguish points (n̂) which are separated below this limiting size (pixel scale).
Hence, this aspect has to be taken into account while computing pairs of points on data. More-
over, finding all possible pairs of points (pixels) is computationally expensive as the pair finding
complexity scales as O(N2

pixel).

There are a number of algorithms which can compute correlations from flat 2D image data.
However, for our lab as we want to compute correlations from data defined on the 2D sphere,

13you should read more about the different Healpy keywords and routines used in this lab from the online
documentation hosted at https://healpy.readthedocs.io/en/latest/index.html
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we use a publicly available numerical code called TreeCorr14 (Jarvis et al. 2004) which is a
software for efficiently computing 2 and 3-point correlation functions of a given field (scalar
or vector) such as density contrast, number counts, weak lensing shear field, CMB temperature
fluctuations etc. Using parallel computing, it can compute the correlations of fields defined in
both 3D Euclidean space or in the curved 2D sky (in Right Ascension (RA) and declination
(dec) coordinates of the sky-map’s pixels) efficiently using the so called ‘ball-tree’ algorithm.
Hence, we use TreeCorr for computing the angular shear 2PCF ξ±(α) of a weak lensing shear
field γ on the celestial sphere:

γ → TREECORR→ ξ±(α)

This is achieved by using the GGCorrelation15 method from TreeCorr.

Exercise:
• P2.4
• P2.5
• P2.6
• P2.7

All the practical exercises are collected in Section 7.

14currently hosted at https://github.com/rmjarvis/TreeCorr
15see https://rmjarvis.github.io/TreeCorr/_build/html/gg.html
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7 The lab
First day of lab

• P1.1: Use the example code in section 6.1.1 (already provided in the accompanying jupyter
notebook) to perform the following:

(i) Run the code in your machine and see if you can have three values printed out. They
should be the three quantities CLASS is asked to compute at the end of the code.

(ii) Now plot the Hubble parameter16 H(z) and angular diameter distance dA(z) as functions
of redshift z. Also plot the corresponding comoving distance χ(z) using equation (21)
and compare it to the dA(z). The redshift z range can be set to a linear scale that is evenly
spaced from 0.0 to 2.0 with 100 intervals (you can use np.linspace)

(iii) Then fixing the redshift at 0.0, 1.0 and 2.0 try to plot the matter power spectrum as a
function of wavenumber k for all the three redshifts. The wavenumber k range can be
set to a logarithmic scale from 0.001 Mpc−1 to 30 Mpc−1 with 100 bins (you can use
np.logspace).

In most of the following exercises, you can use the same arrays of redshift z and of wavenum-
bers k that you have created here.

• P1.2: In the lab (on the second day), we will measure the shear 2PCFs from the publicly
available simulation data set of Takahashi et al., 2017 (or T17 simulation). Therefore, we need
to start working with the T17 cosmological parameters in this and the following exercises.

(i) In exercise T6 you have already found the cosmological parameters of the T17 simula-
tion. Start a new python script (or a new cell in a jupyter notebook) and compute the
same three quantities as you did in P1.1 (i) but using the cosmological parameters of the
T17 simulation.

• P1.Optional: With the same example code in section 6.1.1,

(i) Compute and plot the matter power spectrum at redshift z = 0, 1, 2 and a sequence of
wavenumbers using the T17 cosmological parameters. For convenience use the same
wavenumber values as the ones you have used previously. Compare how these spectra
differ from those you obtained in exercise P1.1 (iii).

(ii) After that, switch off the non linear parameter (just leave it blank or comment it out) in
the example code) such that CLASS would only implement linear perturbation theory in
its calculation. Calculate then the matter power spectrum again at the same redshifts and
wavenumbers. Plot the linear matter power spectra together with the non linear matter
spectra you computed in (i) above and compare their differences, e.g. try to plot the
fractional difference, Pnl/Plin − 1 , between the two spectra at the three redshifts. Try to
explain the fractional difference between the two spectrum along with the wavenumber
k.

16Please use the call method “Hubble” from the CLASS object “Cosmo” as in the example code, but just notice
that according to CLASS convention, the output of the method is always the real Hubble parameter value divided
by the speed of light.
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• P1.3: In this exercise, you will investigate how cosmological parameters can impact the
amplitude and shape of the T17 non linear matter power spectrum at redshift z = 0.0. Use
the parameter values of T17 simulation that you used in Exercise P1.2 as reference (fiducial)
values.

(i) If you haven’t done the P1.Optional exercise above then first compute the non linear
matter power spectrum only at redshift z = 0.0 for the T17 cosmology at the range of
wavenumbers you used in P1.1 (iii). This will be your ‘fiducial’ power spectrum.

(ii) Vary the values of Ωcdm, Ωb, σ8 and h one by one in turn by 5% (both increment and
decrement) with respect to their reference values while keeping others fixed. Plot the
fiducial power spectrum and the slightly changed power spectra for a given parameter
and observe the differences.

(iii) Then apply the central difference method17 to compute the partial derivatives of the mat-
ter power spectrum on a range of k with respect to each of these four parameters. Plot
these partial derivatives together and try to give a physical interpretation about how the
variation of these parameters affect the shape and amplitude of the matter power spec-
trum.

• P1.4: Now recall the concept of weighting or lensing kernel q(χ) introduced in section 2.2.3
and further elaborated in section 4.2. Suppose that for two cases of line-of-sight projection
of the matter power spectrum, the source redshift distributions are Dirac delta functions at
zs,1 = 0.5739 and zs,2 = 1.0344 respectively.

(i) Write the two lensing kernels q(z) ≡ q(χ(z)) as python functions of redshift z and com-
pute their numerical values for a series of redshifts between the observer and the source
redshift zs using CLASS. You can decide the redshift spacing up to the source redshift
yourself as long as the sampling is dense enough.

(ii) For each of the two source redshifts zs,1 and zs,2, plot the corresponding lensing kernels
q(z) against redshift z. Discuss at which redshift the matter power spectrum would be
weighed the most in equation (43) along the line-of-sight projection for each of the two
source redshifts.

• P1.5: Based on the equations given in section 4.2, code yourself in python the line-of-sight
projection of the matter power spectrum for the two Dirac delta source redshift distributions
mentioned in Exercise P1.4.

(i) First you should try to compute the projection at a single multipole number ℓ, say, 1000.
Hint: Study the expression of the integrand and compute all components as arrays at
different redshifts. Then use the trapezoid integration.18 .

Note: It is likely that you will run into an error from CLASS (e.g. from the CLASS
power spectrum) while performing the line of sight integration: read the error and try to
understand what can be the cause of this! To solve this you can (i) start the integration
in z not exactly from 0 but from a small but finite positive value, and also (ii) change the
kmax_pk = 50.0 Mpc−1 value in your CLASS settings (see the code snippet in Sec 6.1.1)

17An explanation of central difference method can be found in:
https://wiki.tum.de/display/modsim/Central+difference+method

18For the integration (projection) along the z dimension, you can use numerical methods to solve it such as
np.trapz: https://numpy.org/doc/stable/reference/generated/numpy.trapz.html
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to a higher value e.g. 200 Mpc−1. Why should these help? Discuss with your tutor about
this.

(ii) Compute the projected 2D convergence power spectrum on a range of multipole numbers.
You should start from ℓ = 2 and end with ℓ = 15000 with 100 bins in a logarithmic scale,
make sure that all bin edges are integer numbers (think how to realise this in python?).
Here we ignore the monopole ℓ = 0 and dipole ℓ = 1 because when we correct the 2D
projected power spectrum to its spherical counterpart according to equation (44) (called
the Kitching correction), both the corrected power spectrum values at monopole and
dipole will be 0.

(iii) Plot the projected 2D convergence power spectra (after applying the Kitching correction)
for both the source redshifts as a function of ℓ.

• P1.6: Now that you have the 2D convergence power spectrum at the two source redshifts,
input them into the prepared code which very efficiently carries out the computation of the
Hankel transforms in equation (63) and equation (64). This will return you the ξ+ and ξ− shear
2PCFs at the two different source redshifts on a range of angular separations (5-140 arcminutes
in 20 logarithmically spaced angular bins). The exact values of these angular separations are
provided in the exercise directory. Plot these shear 2PCFs against the angular bins and save the
values into .txt or .dat files. You will need to compare them to the simulation measurements
in the day of the lab.
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Second day of lab

Here, we just provide a brief description of the exercises. You should see the accompany-
ing jupyter notebook for details regarding this part of the lab.

• P2.1: Working and plotting data on the celestial sphere with healpy. In this exercise you
will generate several all-sky healpy maps for different NSIDE parameters.

• P2.2: Extracting circular patches on the sphere with healpy. In this exercise you will query
circular patches (discs) of radii 2.5 degrees at several locations on an NSIDE=211 healpy all-
sky map you have created in Exercise P2.1.

• P2.3: Importing and checking the simulated weak lensing shear maps from Takahashi simula-
tions (T17). In this exercise you will explore the publicly available Takahashi (T17) simulation
weak lensing shear (γ1 and γ2 components) healpy maps at source redshift zs,1=0.5739. You
will use this data for the next exercises.

• P2.4: Working with TreeCorr: package to compute shear two-point correlation functions
(2PCFs). In order to measure the shear 2PCFs ξ± from the γ1 and γ2 maps at source redshift
zs,1 you have explored in P2.3 you will use the publicly available code package TreeCorr to
compute the 2PCF within a single circular patch of radius 2.5 degrees.

• P2.5: Computing the average shear 2PCFs and their standard deviations in several cir-
cular patches in the zs,1 map.

• P2.6: Computing the average shear 2PCFs and their standard deviations in several cir-
cular patches in the zs,2 map.

• P2.7: Comparing theory calculations of the shear 2PCFs ξ± against the average of the mea-
surements from the simulations. Comment on whether your theoretical calculations from P1.6
agree with your measurements of ξ± or not.
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